Block Gauss and Anti-Gauss Quadrature with Application to Networks

نویسندگان

  • Caterina Fenu
  • David R. Martin
  • Lothar Reichel
  • Giuseppe Rodriguez
چکیده

Approximations of matrix-valued functions of the form WT f(A)W , where A ∈ Rm×m is symmetric, W ∈ Rm×k , with m large and k m, has orthonormal columns, and f is a function, can be computed by applying a few steps of the symmetric block Lanczos method to A with initial block-vector W ∈ Rm×k . Golub and Meurant have shown that the approximants obtained in this manner may be considered block Gauss quadrature rules associated with a matrix-valued measure. This paper generalizes anti-Gauss quadrature rules, introduced by Laurie for real-valued measures, to matrix-valued measures, and shows that under suitable conditions pairs of block Gauss and block anti-Gauss rules provide upper and lower bounds for the entries of the desired matrix-valued function. Extensions to matrix-valued functions of the form WT f(A)V , where A ∈ Rm×m may be nonsymmetric, and the matrices V,W ∈ Rm×k satisfy V TW = Ik are also discussed. Approximations of the latter functions are computed by applying a few steps of the nonsymmetric block Lanczos method to A with initial block-vectors V and W . We describe applications to the evaluation of functions of a symmetric or nonsymmetric adjacency matrix for a network. Numerical examples illustrate that a combination of block Gauss and anti-Gauss quadrature rules typically provides upper and lower bounds for such problems. We introduce some new quantities that describe properties of nodes in directed or undirected networks, and demonstrate how these and other quantities can be computed inexpensively with the quadrature rules of the present paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficiency of Anti-Hourglassing Approaches in Finite Element Method (TECHNICAL NOTE)

one of the simplest numerical integration method which provides a large saving in computational efforts, is the well known one-point Gauss quadrature which is widely used for 4 nodes quadrilateral elements. On the other hand, the biggest disadvantage to one-point integration is the need to control the zero energy modes, called hourglassing modes, which arise. The efficiency of four different an...

متن کامل

Generalized anti-Gauss quadrature rules

Abstract. Gauss quadrature is a popular approach to approximate the value of a desired integral determined by a measure with support on the real axis. Laurie proposed an (n+1)-point quadrature rule that gives an error of the same magnitude and of opposite sign as the associated n-point Gauss quadrature rule for all polynomials of degree up to 2n + 1. This rule is referred to as an anti-Gauss ru...

متن کامل

Sparse Gauss–Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation

A novel sparse Gauss–Hermite quadrature filter is proposed using a sparse-grid method for multidimensional numerical integration in the Bayesian estimation framework. The conventional Gauss–Hermite quadrature filter is computationally expensive for multidimensional problems, because the number of Gauss–Hermite quadrature points increases exponentially with the dimension. The number of sparse-gr...

متن کامل

Degree optimal average quadrature rules for the generalized Hermite weight function

Department of Mathematics, University of Gaziantep, Gaziantep, Turkey e-mail address : [email protected] Abstract For the practical estimation of the error of Gauss quadrature rules Gauss-Kronrod rules are widely used; but, it is well known that for the generalized Hermite weight function, ωα(x) = |x|2α exp(−x2) over [−∞,∞], real positive Gauss-Kronrod rules do not exist. Among the alternati...

متن کامل

Block error rate of optical wireless communication systems over atmospheric turbulence channels

Block error rate performance of subcarrier intensity modulation based optical wireless communication systems is analysed over Gamma–Gamma and lognormal atmospheric turbulence channels. The analysis is applicable to non-coherent binary modulations and coherent binary phase shift keying. The special cases of K-distributed strong turbulence channel and negative exponential turbulence channel are a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013